This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: <http://www.informaworld.com/smpp/title~content=t713617200>

Synthesis of Tri- and Disaccharide Fragments Related to the O-Antigen of Enteropathogenic Escherichia Coli O158

Rajib Panchadhayee^a; Anup Kumar Misra^a a Division of Molecular Medicine, Bose Institute, Kolkata, India

Online publication date: 04 January 2010

To cite this Article Panchadhayee, Rajib and Misra, Anup Kumar(2010) 'Synthesis of Tri- and Disaccharide Fragments Related to the O-Antigen of Enteropathogenic Escherichia Coli O158', Journal of Carbohydrate Chemistry, 29: 1, 39 — 50 To link to this Article: DOI: 10.1080/07328300903477804 URL: <http://dx.doi.org/10.1080/07328300903477804>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Journal of Carbohydrate Chemistry, 29:39–50, 2010 Copyright ^C *Taylor & Francis Group, LLC ISSN: 0732-8303 print / 1532-2327 online DOI: 10.1080/07328300903477804*

Synthesis of Tri- and Disaccharide Fragments Related to the *O*-Antigen of Enteropathogenic *Escherichia Coli* O158

Rajib Panchadhayee and Anup Kumar Misra

Division of Molecular Medicine, Bose Institute, A.J.C. Bose Centenary Campus, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India

Chemical synthesis of a tri- and a disaccharide related to the *O*-antigen of enteropathogenic *E. coli* O158 was achieved in high yield. In the disaccharide (**2**), one Dgalactosamine unit is present in 1,2-*cis-*linked and the other is in the *trans*-orientation, and both of them were prepared from the same intermediate by tuning the reaction solvent. Yields were considerably high in all steps.

Keywords Trisaccharide; Disaccharide, *E. coli*; Glycosylation; Enteropathogenic

INTRODUCTION

Escherichia coli (*E. coli*) bacteria exist as harmless species to life-threatening microorganisms. In general, it is a nonpathogenic member of the human colonic flora. However, certain species of *E. coli* have acquired virulence factors and behave as an opportunistic pathogen responsible for several intestinal and urinary diseases in humans and animals. Three most frequent clinical syndromes caused by *E. coli* are (a) diarrhea, (b) urinary tract infections, and (c) sepsis and meningitis.^[1] *E. coli* causing diarrhea are divided in six categories depending on the type of disease^[2]: (1) enteropathogenic E . *coli* (EPEC), (2) enterotoxigenic *E. coli* (ETEC), (3) enteroinvasive *E. coli* (EIEC), (4)

Received September 2, 2009; accepted November 10, 2009.

Address correspondence to Anup Kumar Misra, Division of Molecular Medicine, Bose Institute, A.J.C. Bose Centenary Campus, P-1/12, C.I.T. Scheme VII-M, Kolkata 700054, India. E-mail: akmisra69@rediffmail.com

Figure 1: Structure of the pentasaccharide repeating unit of the O-antigen from the enteropathogenic Escherichia coli O158.

enterohaemorrhagic *E. coli* (EHEC), (5) enteroaggregative *E. coli* (EAEC), and (6) diffusely adherent *E. coli* (DAEC).

The enteropathogenic *E*. *coli* (EPEC) strains are known to be associated with various kinds of diarrhea in infants and are a cause of illness and death among children in the developing countries.[3] The *O*-antigen or endotoxins are the responsible virulence factor of the enteropathogenic *E. coli* strains, which mediate their interactions with the host at the initial stage of bacterial infection.[4] The structure of the pentasaccharide *O*-antigen of the enteropathogenic *E. coli* strain O158 has been reported by Datta et al. (Fig. 1).^[5] The structure of the pentasaccharide repeating unit is unique in nature as it contains two D-glucopyranosyl and one L-rhamnopyranosyl moieties *α*-glycosidically linked and a disaccharide branch in which one D-galactosamine unit exists as *α*glycosidically linked and the other one is *β*-glycosidically linked. In the recent past, chemical synthesis of immunodominant oligosaccharides has gained considerable interest.^[6] In order to understand the relationship between structure and immunochemical specificity of the *O*-antigen, we decided to prepare a diand a trisaccharide fragment related to the pentasaccharide repeating unit of the *O*-antigen of *E. coli* O158. We herein describe concise chemical synthesis of a tri- and a disaccharide (**1** and **2**) as their methyl glycoside and 2-(4 methoxyphenoxy) ethyl glycoside, respectively (Fig. 2).

RESULTS AND DISCUSSION

Trisaccharide **1** and disaccharide **2** were synthesized from a series of suitably protected monosaccharide intermediates by regio- and stereoselective glycosylations. The functionalized monosaccharide intermediates **3**, [7] **4**, [8] and **5**[9] were prepared from the commercially available monosaccharides using literature-reported reaction conditions. Iodonium ion promoted stereoselective glycosylation of compound **3** with thioglycoside derivative **4** in the presence of a *N*-iodosuccinimide (NIS)-trimethylsilyl trifluoromethanesulfonate (TMSOTf) combination,^[10] which furnished disaccharide derivative 6 in 88% yield, which

Synthesis of Escherichia coli O158 41

Figure 2: Structures of the synthesized tri- and disaccharide fragments corresponding to the O-antigen of enteropathogenic Escherichia coli O158.

was transformed to disaccharide derivative **7** under a one-pot deacetylationbenzylation^[11] reaction condition in 90% yield. Removal of the benzylidene acetal^[12] of compound **7** in the presence of $\text{HClO}_4\text{-SiO}_2^{\{13\}}$ resulted in the disaccharide diol derivative **8** in 79% yield. Regio- and stereoselective glycosylation of compound **8** with thioglycoside donor **5** in the presence of NIS-TMSOTf furnished trisaccharide derivative **9** in 80% yield. Appearance of a signal at *δ* 4.83 (d, $J = 3.8$ Hz) and 98.4 in the ¹H and ¹³C NMR spectrum, respectively, confirmed the formation of compound **9** with the desired stereo outcome. Hydrogenation over Pearlman's catalyst furnished target trisaccharide **1** in 68%. It is worth mentioning that in compound **1**, all monosaccharide units are *α*glycosidically linked (Scheme 1).

In a separate experiment, disaccharide **2** was synthesized as a 2-(4 methoxyphenoxy) ethyl glycoside (**2**). Following literature-reported protocol, 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-*α*-D-galactopyranosyl trichloroacetimidate (**11**) [14] was prepared from tri-*O*-acetyl-D-galactal (**10**) in three steps. Compound **11** was stereoselectively glycosylated with 2-(4-methoxyphenoxy) ethanol ($\mathbf{12}$) $^{[15]}$ in the presence of TMSOTf in $\mathrm{CH_{3}CN^{[16]}}$ to give compound $\mathbf{13}$ in 78% yield. Exclusive formation of 1,2-*trans* glycoside was achieved by exploiting the nitrile effect of the solvent. Sequential deacetylation and benzylidene acetal formation of compound **13** furnished compound **14** in 87% yield. Another *α*-selective glycosylation of compound **13** with glycosyl donor **11** in the presence of TMSOTf in methylene chloride^[17] furnished disaccharide derivative 15 in 75% yield. Finally, hydrogenolysis^[18] of disaccharide derivative 15

Scheme 1: Reagents: (a) N-iodosuccinimide, TMSOTf, CH₂Cl₂, MS 4Å, -40 °C, 1 h, 88% for 6 and 80% for $\mathbf{9}$; (b) benzyl bromide, NaOH, TBAB, THF, rt, 6 h, 90%; (c) HClO₄-SiO₂, CH₃CN, H₂O, rt, 20 min, 79%; (d) H₂, 20% Pd(OH)₂-C, CH₃OH, rt, 24 h, 68%.

followed by *N*-acetylation and *O*-deacetylation afforded target disaccharide **2** as its 2-(4-methoxyphenoxy) ethyl glycoside in 72% yield (Scheme 2).

In summary, a tri- and a disaccharide related to the *O*-antigen of *E. coli* O158 were synthesized in excellent yield as methyl and 2-(4-methoxyphenoxy) ethyl glycoside, respectively. All glycosylation and protecting group manipulation steps were high yielding and reproducible for scale-up preparation. All

Scheme 2: Reagents: (a) Ref. (14); (b) TMSOTf, CH₃CN, -20℃, 1 h, 78%; (c) (i) 0.1 N CH₃ONa, CH₃OH, rt, 3 h; (ii) PhCH(OCH₃)₂, p-TsOH, CH₃CN, rt, 12 h, 87%; (d) TMSOTf, CH₂Cl₂, −20°C, 1
h, 75%; (e) (i) H₂, 20% Pd(OH)₂-C, CH₃OH, rt, 12 h; (ii) acetic anhydride, pyridine, rt, 2 h; (iii) 0.1 N CH₃ONa, CH₃OH, rt, 6 h, 72%.

monosaccharide moieties are *α*-linked in trisaccharide **1**. The disaccharide **2** was prepared from a single intermediate having a nonparticipating group at the C-2 position employing the solvent effect on the stereo outcome of the glycosylation.

EXPERIMENTAL

General Procedure

All reactions were monitored by thin layer chromatography using silica gel-coated TLC plates. The spots on TLC were visualized by warming ceric sulphate $(2\% \text{Ce(SO}_4)_2$ in $2N \text{ H}_2\text{SO}_4)$ -sprayed plates on a hot plate. Silica gel $230-400$ mesh was used for column chromatography. ¹H and ¹³C NMR, 2D COSY, and HMQC spectra were recorded on a Bruker Avance DRX 500 MHz using $CDCl₃$ and $CD₃OD$ as solvents and TMS as internal reference unless stated otherwise. Chemical shift values are expressed in *δ* ppm. ESI-MS was recorded on a Micromass Quattro II triple quadrupole mass spectrometer. Elementary analysis was carried out on a Carlo ERBA-1108 analyzer. Optical rotations were measured at 25◦C on a Perkin Elmer 341 polarimeter. Commercially available grades of organic solvents of adequate purity were used in many reactions.

Methyl (2,3,4-tri-*O*-acetyl-*α*-L-rhamnopyranosyl)-(1**→**3)-2-*O*benzyl-4,6-*O*-benzylidene-*α*-D-glucopyranoside (6)

To a solution of compound **3** (1.5 g, 4.03 mmol) and compound **4** (1.6 g, 4.78 mmol) in anhydrous CH_2Cl_2 (20 mL) was added MS 4Å (2 g) and the reaction mixture was allowed to stir at rt under argon for 1 h. The reaction mixture was cooled to −40◦C; to the cold reaction mixture were added *N*-iodosuccinimide (NIS; 1.3 g, 5.77 mmol) and TMSOTf $(25 \mu L)$, and the reaction mixture was allowed to stir at the same temperature for 1 h. The reaction mixture was filtered through a Celite bed and washed with CH_2Cl_2 (100 mL). The organic layer was successively washed with 5% Na₂S₂O₃, satd. NaHCO₃, and H₂O; dried (Na₂SO₄); and concentrated. The crude product was purified over SiO₂ using hexane-EtOAc (6:1) as eluant to give pure **6** (2.3 g, 88%). Yellow oil; IR (neat): 2937, 1748, 1373, 1248, 1224, 1137, 1088, 1048, 986, 750, 699 cm−1; 1H NMR (500 MHz, CDCl3): *δ* 7.46–7.25 (m, 10 H, Ar-H), 5.49 (s, 1 H, PhC*H*), 5.30–5.28 (m, 1 H, H-2_B), 5.24 (dd, $J = 9.9$ and 3.5 Hz, 1 H, H-3_B), 5.09 (br s, 1 H, H-1_B), 4.90 (t, $J = 9.9$ Hz, 1 H, H-4_B), 4.71 (d, $J = 12$ Hz, 1 H, PhC H_2), 4.56 (d, $J = 12.1$ Hz, 1 H, PhC H_2), 4.51 (d, $J = 3.4$ Hz, 1 H, H-1_A), 4.25–4.20 $(m, 1 \text{ H}, \text{H-6}_{aA})$, 4.16–4.07 (m, 2 H, H-4_A and H-5_B), 3.79–3.76 (m, 1 H, H-5_A), 3.69–3.46 (m, 1 H, H-6 $_{\rm{bA}}$), 3.53–3.46 (m, 2 H, H-2_A and H-3_A), 3.35 (s, 3 H, OC*H*3), 2.09 (s, 3 H, COC*H*3), 1.98 (s, 3 H, COC*H*3), 1.94 (s, 3 H, COC*H*3),

0.75 (d, $J = 6.1$ Hz, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 169.9 (*COCH₃*), 169.7 (*C*OCH3), 169.5 (*C*OCH3), 137.6–126.3 (Ar-C), 101.7 (Ph*C*H), 98.6 (C-1A), 97.9 (C-1B), 80.4 (C-2A), 79.7, (Ph*C*H2), 74.1 (C-5A), 73.3, (C-3B), 71.1, (C-3A), 69.7 (C-4_A), 69.3 (C-2_B), 68.9 (C-4_B), 65.9, (C-5_B), 62.2 (C-6_A), 55.3 (OCH₃), 20.8 (CO*C*H3), 20.7 (CO*C*H3), 20.6 (CO*C*H3), 16.6 (C*C*H3); ESI-MS: 667.2 [M+Na]+; Anal. Calcd. for $C_{33}H_{40}O_{13}$ (644.25): C, 61.48; H, 6.25; found: C, 61.30; H, 6.50.

Methyl (2,3,4-tri-*O*-benzyl-*α*-L-rhamnopyranosyl)-(1**→**3)-2-*O*benzyl-4,6-*O*-benzylidene-*α*-D-glucopyranoside (7)

To a solution of compound **6** (2 g, 3.10 mmol) in THF (15 mL) were added powdered NaOH (1 g, 25 mmol), benzyl bromide (1.7 mL, 14.3 mmol), and Bu4NBr (200 mg, 0.62 mmol) and the reaction mixture was allowed to stir briskly at rt for 6 h. The reaction mixture was poured into $H_2O(300 \text{ mL})$ and extracted with CH_2Cl_2 (150 mL). The organic layer was washed with H_2O (200 mL), dried $(Na₂SO₄)$, and concentrated under reduced pressure. The crude product was purified over $SiO₂$ using hexane-EtOAc (8:1) to give pure **7** (2.2) g, 90%). Yellow oil; IR (neat): 3031, 2979, 2899, 2867, 1497, 1454, 1389, 1361, 1181, 1123, 1093, 1059, 1046, 1028, 995, 912, 750 cm−1; 1H NMR (500 MHz, CDCl3): *δ* 7.46–7.16 (m, 25 H, Ar-H), 5.45 (s, 1 H, PhC*H*), 5.17 (br s, 1 H, H-1B), 4.86 (d, $J = 11.1$ Hz, 1 H, PhC H_2), 4.61–4.39 (m, 7 H, 3 PHC H_2 and H-1_A), 4.24–4.19 (m, 1 H, H-6_{aA}), 4.12 (t, $J = 9.3$ Hz, H-4_A), 4.01–3.97 (m, 1 H, H-5_B), 3.84–3.74 (m, 3 H, H-2_B, H-5_A, and H-6_{bA}), 3.65 (t, $J = 4.9$ Hz, 1 H, H-4_B), 3.53 (t, $J = 9.5$ Hz, 1 H, H-3_A), 3.41–3.36 (m, 2 H, H-2_A and H-3_B), 3.35 (s, 3 H, OCH₃), 0.90 (d, $J = 6.1$ Hz, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 139.0–126.3 (Ar-C), 101.6 (PhCH), 98.6 (C-1_A), 98.4 (C-1_B), 80.7 (C-2_A), 80.4 (C-5_A), 80.1 (2 C, 2 Ph*C*H₂), 74.9 (2 C, 2 Ph*C*H₂), 74.4 (C-3_B), 72.8 (C-3_A), 72.1 (C- 2_B), 72.0 (C-4_A), 68.9 (C-4_B), 67.7 (C-5_B), 62.6 (C-6_A), 55.5 (OCH₃), 17.4 (CCH₃); ESI-MS: 811.3 [M+Na]⁺; Anal. Calcd. for $C_{48}H_{52}O_{10}$ (788.36): C, 73.08; H, 6.64; found: C, 72.86; H, 6.87.

Methyl (2,3,4-tri-*O*-benzyl-*α*-L-rhamnopyranosyl)-(1**→**3)-2-*O*benzyl-*α*-D-glucopyranoside (8)

To a solution of compound $7(2 \text{ g}, 2.53 \text{ mmol})$ in $\text{CH}_3\text{CN-H}_2\text{O}$ (50 mL, 9:1) v/v) was added HClO₄-SiO₂ (500 mg) and the reaction mixture was allowed to stir at rt for 20 min. The reaction mixture was filtered and concentrated under reduced pressure. The crude product was purified over $SiO₂$ using hexane-EtOAc (3:1) as eluant to give pure **8** (1.4 g, 79%). Yellow oil; IR (neat): 3364, 2922, 2857, 1497, 1454, 1370, 1207, 1121, 1060, 1027, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl3): *δ* 7.33–7.23 (m, 20 H, Ar-H), 5.04 (d, *J* = 1.4 Hz, 1 H, H-1B), 4.94 $(d, J = 10.8 \text{ Hz}, 1 \text{ H}, \text{PhCH}_2)$ 4.68 $(d, J = 12.3 \text{ Hz}, 1 \text{ H}, \text{PhCH}_2)$, 4.64 $(d, J = 12.3 \text{ Hz})$

10.8 Hz, 1 H, PhC*H*2), 4.63 (d, *J* = 12.3 Hz, 1 H, PhC*H*2) 4.59–4.53 (m, 3 H, PhC*H*2), 4.51 (d, *J* = 3.6 Hz, 1 H, H-1A), 4.39 (d, *J* = 12.1 Hz, 1 H, PhC*H*2), 3.95–3.92 (m, 1 H, H-5_B), 3.86–3.64 (m, 2 H, H-2_B and H-4_B), 3.81–3.78 (m, 2 H, H-6_{aA} and H-3_B), 3.76–3.73 (m, 1 H, H-6_{bA}), 3.68 (t, $J = 9.3$ Hz, 1 H, H- 4_A), 3.59–3.55 (m, 1 H, H-5_A), 3.40 (t, $J = 9.1$ Hz, 1 H, H-3_A), 3.35 (s, 3 H, OC H_3), 3.30 (dd, $J = 9.5$ and 3.6 Hz, 1 H, H-2_A), 1.34 (d, $J = 6.1$ Hz, 3 H, CC H_3); ¹³C NMR (125 MHz, CDCl₃): δ 138.8–127.9 (Ar-C), 100.7 (C-1_A), 98.4 (C-1B) 85.4 (C-2B), 80.5 (C-5A), 79.6 (C-3B), 78.0 (C-3A), 75.8 (Ph*C*H2), 75.6 (C-2A), 73.9 (Ph*C*H2), 73.0 (Ph*C*H2), 72.4 (Ph*C*H2), 71.1 (C-4A), 70.8 (C-4B), 69.8 (C-5B), 62.9 (C-6A), 55.6 (O*C*H3), 18.4 (C*C*H3); ESI-MS: 723.3 [M+Na]+; Anal. Calcd. for $C_{41}H_{48}O_{10}$ (700.32): C, 70.27; H, 6.90; found: C, 70.04; H, 7.15.

Methyl (2,3,4-tri-*O*-benzyl-*α*-L-rhamnopyranosyl)-(1**→**3)-[2,3,4,6 tetra-*O*-benzyl-*α*-D-glucopyranosyl)-(1**→**6)]-2-*O*-benzyl-*α*-Dglucopyranoside (9)

To a solution of compound **8** (1 g, 1.43 mmol) and compound **5** (1 g, 1.71 mmol) in anhydrous CH_2Cl_2 (10 mL) was added MS 4A (1 g) and the reaction mixture was allowed to stir at rt for 1 h then cooled to -40° C. To the cold reaction mixture were added NIS (450 mg, 2 mmol) and TMSOTf $(10 \mu L)$ and the reaction mixture was allowed to stir at the same temperature for 1 h. The reaction mixture was filtered through a Celite bed and washed with CH_2Cl_2 (100 mL). The organic layer was successively washed with 5% $\text{Na}_2\text{S}_2\text{O}_3$, satd. NaHCO₃, and H₂O; dried (Na₂SO₄); and concentrated under reduced pressure. The crude product was purified over $SiO₂$ using hexane-EtOAc (4:1) as eluant to give pure **9** (1.4 g, 80%). Yellow oil; IR (neat): 3064, 3030, 2919, 2870, 1730, 1496, 1454, 1362, 1216, 1061, 1028, 912, 753 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): *δ* 7.31–7.11 (m, 40 H, Ar-H), 5.03 (d, *J* = 1.4 Hz, 1 H, H-1B), 5.0–4.81 (m, 3 H, PhC*H*2), 4.83 (d, *J* = 3.8 Hz, 1 H, H-1C), 4.88–4.76 (m, 3 H, PhC*H*2), 4.68–4.57 $(m, 4$ H, PhC H_2), 4.56–4.50 (m, 6 H, H-1_A and PhC H_2), 4.49–4.47 (m, 1 H, PhC*H*₂), 4.44–4.33 (m, 1 H, PhC*H*₂), 4.06–4.03 (m, 1 H, H-6_{aC}), 3.98–3.88 (m, 1 H, H-5_B), 3.86–3.76 (m, 4 H, H-2_B, H-4_B, H-6_{bC} and H-5_C), 3.75–3.73 (m, 1 H, H-6_{aA}), 3.72–3.63 (m, 3 H, H-6_{bA}, H-3_B and H-4_C), 3.62–3.59 (m, 2 H, H-4_A and H-5_A), 3.58–3.56 (m, 1 H, H-3_C), 3.55–3.43 (m, 2 H, H-3_A and H-2_C), 3.30 $(s, 3$ H, OCH₃), 3.26 (dd, $J = 9.5$ and 3.6 Hz, 1 H, H-2_A), 1.3 (d, $J = 6.1$ Hz, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃): *δ* 139.0–127.8 (Ar-C), 104.4 (C-1_A), 100.8 (C-1_B), 98.4 (C-1_C), 85.1 (C-2_B), 82.7 (C-5_A), 80.5 (C-3_A), 79.7 (C-3_B), 78.2 (C-2A), 78.1 (C-5C), 76.1 (Ph*C*H2), 75.8 (Ph*C*H2), 75.7 (C-4C), 75.4 (C-3C), 75.3 (Ph*C*H2), 75.0 (Ph*C*H2), 73.9 (Ph*C*H2), 73.8 (2 Ph*C*H2), 73.1 (C-2C), 73.0 (C- (4) , 72.4 (PhCH₂ and C-4_B), 70.8 (C-6_A), 70.5 (C-6_C), 70.1 (C-5_B), 55.6 (OCH₃), 18.4 (CCH₃); ESI-MS: 1245.5 [M+Na]⁺; Anal. Calcd. for C₇₅H₈₂O₁₅ (1222.57): C, 73.63; H, 6.76; found: C, 73.44; H, 7.0.

Methyl (*α*-L-rhamnopyranosyl)-(1**→**3)-[*α*-D-glucopyranosyl)- (1**→**6)]-*α*-D-glucopyranoside (1)

To a solution of compound $9(1 \text{ g}, 0.82 \text{ mmol})$ in $CH₃OH (10 \text{ mL})$ was added 20% Pd(OH)₂-C (200 mg) and the reaction mixture was allowed to stir at rt under a positive pressure of hydrogen for 24 h. The reaction mixture was filtered through a Celite bed and concentrated under reduced pressure to give compound **1**, which was passed through a column of LH-20 Sephadex gel using CH3OH-H2O (8:1) as eluant to give pure **1** (280 mg, 68%). White powder; IR (KBr): ¹H NMR (500 MHz, CD₃OD): *δ* 4.97 (br s, 1 H, H-1_B), 4.69 (br s, 1 H, H-1_C), 4.39 (d, $J = 3.4$ Hz, 1 H, H-1_A), 4.08–4.06 (m, 1 H, H-3_B), 3.96–3.91 (m, 2 H, H-4_B and H-2_B), 3.84–3.80 (m, 1 H, H-6_{aC}), 3.77–3.73 (m, 1 H, H- 5_B), 3.72–3.60 (m, 4 H, H-6_{ab}_A, H-4_A and H-4_C), 3.59–3.56 (m, 1 H, H-6_{bC}), 3.50–3.46 (m, 2 H, H-5_A and H-5_C), 3.42–3.36 (m, 2 H, H-2_A and H-2_C), 3.36 (s, 1 H, OCH_3), 3.34–3.28 (m, 1 H, H-3_C), 3.24 (t, $J = 9.2$ Hz, 1 H, H-3_C), 1.15 (d, *J* $= 6.2$ Hz, 3 H, CCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 103.1 (C-1_A), 101.5 (C-1_B), 99.8 (C-1_C), 80.3 (C-4_A), 76.2 (C-2_A), 73.5 (C-3_A), 72.3 (C-2_C), 72.0 (C-5_B), 71.0 $(C-4_C)$, 70.7 $(C-2_B$ and $C-4_B)$, 70.6 $(C-5_C)$, 70.5 $(C-3_C)$, 70.0 $(C-5_A)$, 69.1 $(C-3_B)$, 60.9 (C-6_A), 60.8 (C-6_C), 55.6 (OCH₃), 16.9 (CCH₃); ESI-MS: 525.1 [M+Na]⁺; Anal. Calcd. for $C_{19}H_{34}O_{15}$ (502.19): C, 45.42; H, 6.82; found: C, 45.20; H, 7.10.

2-(4-Methoxyphenoxy) ethyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy*β*-D-galactopyranoside (13)

To a solution of 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-*β*-D-galactopyranosyl trichloroacetimidate (11; 1 g, 2.1 mmol) in anhydrous CH_3CN (10 mL) was added 2-(4-methoxyphenoxy) ethanol (**12**; 550 mg, 3.27 mmol) and the solution was cooled to −20◦C. To the cold reaction mixture was added TMSOTf $(20 \mu L)$ and the reaction mixture was allowed to stir at the same temperature for 1 h. The reaction was quenched by addition of $Et_3N(0.1 \text{ mL})$ and diluted with CH_2Cl_2 (100 mL). The organic layer was successively washed with satd. $NaHCO₃$ and $H₂O$, dried $(Na₂SO₄)$, and concentrated to dryness. The crude product was purified over $SiO₂$ using hexane-EtOAc (4:1) as eluant to give pure **13** (790 mg, 78%). Yellow oil; IR (neat): 3020, 2837, 2116, 1794, 1508, 1370, 1229, 1045, 827, 758 cm−1; 1H NMR (500 MHz, CDCl3): *δ* 6.88–6.81 (m, 4 H, Ar-H), 5.33 (d, *J* = 3.2 Hz, 1 H, H-4), 4.79 (dd, *J* = 10.3 and 3.3 Hz, 1 H, H-3), 4.52 (d, $J = 8.1$ Hz, 1 H, H-1), $4.20-4.09$ (m, 5 H, H-6_{ab}, OC*H*_{2ab}, and OCH2a), 4.01–3.96 (m, 1 H, OC*H*2b), 3.88–3.85 (m, 1 H, H-5), 3.76 (s, 3 H, OC*H*3), 3.71 (dd, *J* = 10.9 Hz, 1 H, H-2), 2.16 (s, 3 H, COC*H*3), 2.09 (s, 3 H, COC*H*3), 2.03 (s, 3 H, COC*H*3); 13C NMR (125 MHz, CDCl3): *δ* 170.7 (*C*OCH3), 170.4 (*C*OCH3), 170.2 (*C*OCH3), 103.1 (C-1), 71.4 (C-4), 71.1 (C-3), 69.1 (C-5), 68.2 (O*C*H2), 66.7 (O*C*H2), 61.6 (C-2), 61.1 (C-6), 56.1 (O*C*H3), 21.0 (3 C, 3 COCH₃); ESI-MS: 504.1 [M+Na]⁺; Anal. Calcd. for $C_{21}H_{27}N_{3}O_{10}$ (481.17): C, 52.39; H, 5.65; found: C, 52.20; H, 5.90.

2-(4-Methoxyphenoxy) ethyl 2-azido-4,6-*O*-benzylidene-2-deoxy*β*-D-galactopyranoside (14)

A solution of compound $13(700 \text{ mg}, 1.45 \text{ mmol})$ in $0.1 \text{ M } CH_3\text{ONa } (10 \text{ mL})$ was allowed to stir at rt for 3 h and neutralized with Amberlite IR 120 (H+) resin. The reaction mixture was filtered and concentrated under reduced pressure. To a solution of the deacetylated product in anhydrous $CH₃CN$ (5 mL) was added benzaldehyde dimethylacetal (330 *µ*L, 2.2 mmol) and *p*-TsOH (50 mg) and the reaction mixture was allowed to stir at rt for 12 h. The reaction was quenched with Et_3N (0.1 mL) and the solvents were removed under reduced pressure. The crude product was purified over $\rm SiO_2$ using toluene-EtOAc $(2:1)$ as eluant to give pure 14 (560 mg, 87%). Yellow oil; ¹H NMR (500 MHz, CDCl3): *δ* 7.51–7.49 (m, 2 H, Ar-H), 7.37–7.35 (m, 3 H, Ar-H), 6.87 (d, *J* = 9.1 Hz, 2 H, Ar-H), 6.81 (d, *J* = 9.1 Hz, 2 H, Ar-H), 5.53 (s, 1 H, PhC*H*), 4.42 (d, *J* $= 7.9$ Hz, 1 H, H-1), 4.27 (dd, $J = 12.5$ and 1.3 Hz, 1 H, H-6_A), 4.23–4.19 (m, 1 H, OC H_{2a}), 4.15–4.12 (m, 3 H, OC H_{2ab} and H-4), 4.01 (dd, $J = 12.5$ and 1.7 Hz, 1 H, H-6_b), 3.97–3.93 (m, 1 H, OCH_{2b}), 3.74 (s, 3 H, OCH₃), 3.65 (dd, $J =$ 10.8 Hz, 1 H, H-2), 3.53 (dd, *J* = 9.9 and 2.9 Hz, 1 H, H-3), 3.40–3.38 (m, 1 H, H-5); 13C NMR (125 MHz, CDCl3): *δ* 154.4–115.0 (Ar-C), 102.8 (Ph*C*H), 101.7 (C-1), 75.0 (C-5), 71.7 (C-4), 69.3 (C-3), 68.7 (O*C*H2), 68.4 (O*C*H2), 66.9 (C-6), 64.2 (C-2), 56.1 (OCH₃); ESI-MS: 466.1 [M+Na]⁺; Anal. Calcd. for C₂₂H₂₅N₃O₇ (443.17): C, 59.59; H, 5.68; found: C, 59.41; H, 5.90.

2-(4-Methoxyphenoxy) ethyl (3,4,6-tri-*O*-acetyl-2-azido-2-deoxy*α*-D-galactopyranosyl)-(1**→**3)-2-azido-4,6-*O*-benzylidene-2 deoxy-*β*-D-galactopyranoside (15)

A solution of compound **14** (500 mg, 1.13 mmol) and compound **11** (650 g, 1.37 mmol) in anhydrous CH₂Cl₂ (8 mL) was cooled to -20 °C. To the cold reaction mixture was added TMSOTf $(10 \mu L)$ and the reaction mixture was allowed to stir at the same temperature for 1 h. The reaction was quenched with Et_3N (0.1 mL) and diluted with CH_2Cl_2 (50 mL). The organic layer was washed with H_2O , dried (Na_2SO_4), and concentrated. The crude product was purified over SiO_2 using hexane-EtOAc (5:1) as eluant to give pure 15 (640) mg, 75%). Yellow oil; IR (neat): 3396, 2926, 1646, 1509, 1373, 1233, 1057, 823 cm−1; 1H NMR (500 MHz, CDCl3): *δ* 7.55–7.53 (m, 2 H, Ar-H), 7.35–7.33 (m, 3 H, Ar-H), 6.85 (d, *J* = 9.2 Hz, 2 H, Ar-H), 6.82 (d, *J* = 9.2 Hz, 2 H, Ar-H), 5.58 $(s, 1 H, PhCH), 5.51 (d, J = 2.4 Hz, 1 H, H-4B), 5.43 (dd, J = 11.3 and 3.3 Hz,$ 1 H, H-3_B), 5.21 (d, $J = 3.6$ Hz, 1 H, H-1_B), 4.53 (t, $J = 6.5$ Hz, 1 H, H-5_B), 4.49 $(d, J = 8.0 \text{ Hz}, 1 \text{ H}, \text{H-1}_A)$, 4.31 (dd, $J = 12.5$ and 1.2 Hz, 1 H, H-6_{aA}), 4.27 (d,

 $J = 3.4$ Hz, 1 H, H-4_A), 4.25–4.22 (m, 1 H, OCH_{2a}), 4.17–4.13 (m, 3 H, H-6_{abB} and OCH_{2a}), 4.09 (dd, $J = 12.4$ and 1.4 Hz, 1 H, H-6_{bA}), 4.06–4.01 (m, 1 H, OC H_{2b}), 4.00–3.96 (m, 1 H, OC H_{2b}), 3.90 (dd, $J = 8.1$ Hz, 1 H, H-2_A), 3.7 (s, 3 H, OCH₃), 3.66 (dd, $J = 11.2$ and 3.3 Hz, 1 H, H-2_B), 3.61 (dd, $J = 10.5$ and 3.6 Hz, 1 H, H-3A), 3.42–3.39 (m, 1 H, H-5A), 2.13, 2.03 (2 s, 9 H, 3 COC*H*3); 13C NMR (125 MHz, CDCl3): *δ* 170.8 (*C*OCH3), 170.3 (*C*OCH3), 169.9 (*C*OCH3), 129.3–115.0 (Ar-C), 103.1 (C-1A), 101.3 (Ph*C*H), 95.1 (C-1B), 75.0 (C-3A), 71.3 $(C-4_A)$, 69.4 $(C-6_A)$, 68.5 $(C-6_B)$, 68.4 $(C-4_B)$, 68.1 $(C-3_B)$, 68.0 $(C-5_B)$, 67.7 $(C-6_A)$ 5A), 66.8 (O*C*H2), 62.0 (O*C*H2), 61.4 (C-2A), 57.3 (C-2B), 56.1 (O*C*H3), 21.0 (3 C, 3 COCH₃); ESI-MS: 779.2 [M+Na]⁺; Anal. Calcd. for $C_{34}H_{40}N_6O_{14}$ (756.26): C, 53.97; H, 5.33; found: C, 53.76; H, 5.55.

2-(4-Methoxyphenyl)-ethyl (2-acetamido-2-deoxy-*α*-Dgalactopyranosyl)-(1**→**3)-2-acetamido-2-deoxy-*β*-Dgalactopyranoside (2)

To a solution of compound 15 (600 mg, 0.79 mmol) in $CH₃OH$ (5 mL) was added 20% Pd(OH)₂-C (100 mg) and the reaction mixture was allowed to stir under hydrogen at rt for 12 h. The reaction mixture was filtered through a Celite bed and concentrated. A solution of the crude product in acetic anhydride-pyridine (5 mL, 1:1 v/v) was kept at rt for 2 h and the solvents were removed under reduced pressure. A solution of the acetylated product in 0.1 M CH₃ONa in CH₃OH (5 mL) was allowed to stir at rt for 6 h and neutralized with Dowex 50W X8 $(H⁺)$ resin. The reaction mixture was filtered and concentrated under reduced pressure to give **2**, which was further purified through a column of Sephadex LH-20 using $CH₃OH$ as eluant (325 mg, 72%). White powder; IR (KBr): 2934, 2114, 1751, 1508, 1371, 1233, 1130, 1054, 823 cm−1; 1H NMR (500 MHz, DMSO-d6): *^δ* 6.87–6.81 (m, 4 H, Ar-H), 4.94 (d, *^J* ⁼ 3.6 Hz, 1 H, H-1_B), 4.56 (d, $J = 8.0$ Hz, 1 H, H-1_A), 4.27 (d, $J = 2.8$ Hz, 1 H, H-4_A), 4.05–3.93 (m, 8 H, H-6_{abA}, H-6_{abB}, H-2_B, H-3_A and OC*H*_{2ab}), 3.85–3.69 (m, 4 H, H-3B, H-4B and OC*H*2ab), 3.67 (s, 3 H, OC*H*3), 3.58–3.49 (m, 3 H, H-5A, H-5B and H-2A), 1.77, 1.46 (2 s, 6 H, 2 NHCOC*H*3); 13C NMR (125 MHz, DMSO-d6): *δ* 170.3 (2 NH*C*OCH3), 129.6–127.1 (Ar-C), 101.7 (C-1A), 94.6 (C- 1_B), 71.9 (C-4_A), 71.7 (C-4_B), 69.4 (C-6_A), 68.6 (C-6_B), 68.4 (C-3_B), 68.3 (2 C, 2 OCH₂), 67.9 (C-3_A and C-5_B), 66.7 (C-5_A), 60.9 (C-2_A), 56.2 (OCH₃), 50.5 (C-2_B), 23.7 (NHCO*C*H3), 23.3 (NHCO*C*H3); ESI-MS: 597.2 [M+Na]+; Anal. Calcd. for $C_{25}H_{38}N_2O_{13}$ (574.24): C, 52.26; H, 6.67; found: C, 52.02; H, 6.95.

ACKNOWLEDGEMENTS

R.P. thanks CSIR, New Delhi, for providing a Senior Research Fellowship. This work was supported by Ramanna Fellowship (AKM), Department of Science and Technology, New Delhi (SR/S1/RFPC-06/2006).

REFERENCES

1. Nataro, J.P.; Kaper, J.B. Diarrheagenic *Escherichia coli*. *Clin. Microbiol. Rev.* **1998**, *11*, 142–201.

2. (a) Ørskov, I.; Ørskov, F.; Jann, B.; Jann, K. Serology, chemistry, and genetics of O and K antigens of *Escherichia coli*. *Bacteriol. Rev.* **1977**, *41*, 667–710. (b) Mendez Arancibia, E.; Pitart, C.; Ruiz, J.; Marco, F.; Gascon, J.; Vila, J. Evolution of antimicrobial resistance in enteroaggregative *Escherichia coli* and enterotoxigenic *Escherichia coli* causing traveller's diarrhea. *J. Antimicrob. Chemother.* **2009**, *64*, 343–347. (c) Weintraub, A. Enteroaggregative *Escherichia coli*: epidemiology, virulence and detection. *J. Med. Microbiol.* **2007**, *56*, 4–8. (d) Chen Huiwen, D.; Frankel, G. Enteropathogenic *Escherichia coli*: unravelling pathogenesis. *FEMS Microbiol. Rev.* **2005**, *29*, 83–98. (e) Hart, C.A.; Batt, R.M.; Saunders, J.R. Diarrhoea caused by *Escherichia coli*. *Ann Tropical Paediatr.* **1993**, *13*, 121–131. (f) Hill, S.M.; Phillips, A.D.; Walker-Smith, J.A. Enteropathogenic *Escherichia coli* and life threatening chronic diarrhoea. *Gut* **1991**, *32*, 154–158.

3. Albert, M.J.; Faruque, S.M.; Faruque, A.S.; Neogi, P.K.; Ansaruzzaman, M.; Bhuiyan, N.A.; Alam, K.; Akbar, M.S. Controlled study of *Escherichia coli* diarrheal infections in Bangladeshi children. *J. Clin. Microbiol.* **1995**, *33*, 973–977.

4. (a) Stenutz, R.; Weintraub, A.; Widmalm, G. The structures of *Escherichia coli O*polysaccharide antigens. *FEMS Microbiol. Rev.* **2006**, *30*, 382–403. (b) Chen, X.; Gao, S.; Jiao, X.; Liu, X.F. Prevalence of serogroups and virulence factors of *Escherichia coli* strains isolated from pigs with postweaning diarrhoea in eastern China. *Veter. Microbiol.* **2004**, *103*, 13–20.

5. Datta, A.K.; Basu, S.; Roy, N. Chemical and immunochemical studies of the *O*antigen from enteropathogenic *Escherichia coli O*158 lipopolysaccharide. *Carbohydr. Res.* **1999**, *322*, 219–227.

6. (a) Pace, D. Quadrivalent meningococcal ACYW-135 glycoconjugate vaccine for broader protection from infancy. *Expert Rev. Vaccines* **2009**, *8*, 529–542. (b) Kaellenius, G.; Pawlowski, A.; Hamasur, B.; Svenson, S.B. Mycobacterial glycoconjugates as vaccine candidates against tuberculosis. *Trends Microbiol.* **2008**, *16*, 456–462. (c) Mulard, L.A.; Phalipon, A. From epitope characterization to the design of semisynthetic glycoconjugate vaccines against *Shigella flexneri* 2a infection. *ACS Symposium Series*, **2008**, *989*, 105–136. (d) Santana, V.F.; Icart, L.P.; Beurret, M.; Costa, L.; Verez Bencomo, V. Glycoconjugate vaccines against *Haemophilus influenzae* type b. *Methods Enzymol.* **2006**, *415*, 153–163. (e) Paradiso, P.R.; Lindberg, A.A. Glycoconjugate vaccines: future combinations. *Dev. Biol. Standard.* **1996**, *87*, 269–275. (f) Berkin, A.; Coxon, B.; Pozsgay, V. Towards a synthetic glycoconjugate vaccine against *Neisseria meningitidis* A. *Chem. Eur. J.* **2002**, *8*, 4424–4433. (g) Verez-Bencomo, V.; Fernandez-Santana, V.; Hardy, E.; ´ Toledo, M.E.; Rodríguez, M.C.; Heynngnezz, L.; Rodriguez, A.; Baly, A.; Herrera, L.; Izquierdo, M.; Villar, A.; Valdes, Y.; Cosme, K.; Deler, M.L.; Montane, M.; Garcia, E.; ´ Ramos, A.; Aguilar, A.; Medina, E.; Toraño, G.; Sosa, I.; Hernandez, I.; Martínez, R.; Muzachio, A.; Carmenates, A.; Costa, L.; Cardoso, F.; Campa, C.; Diaz, M.; Roy, R. A synthetic conjugate polysaccharide vaccine against *Haemophilus influenzae* type b. *Science* **2004**, *305*, 522–525. (h) Pozsgay, V. Synthetic shigella vaccines: a carbohydrateprotein conjugate with totally synthetic hexadecasaccharide haptens. *Angew. Chem. Int. Ed. Engl.* **1998**, *37*, 138–142.

7. Ogawa, T.; Kasurgi, T. Synthesis of a branched D-glucotetraose, the repeating unit of the extracellular polysaccharide of Grifola umbellate, Sclerotinia libertiana, Porodisculus pendulus and Schizophyllum commune fries. *Carbohydr. Res.* **1982**, *103*, 53–64.

8. Veeneman, G.H.; Gomes, L.J.F.; van Boom, J.H. Synthesis of fragments of a streptococcus pneumoniae type-specific capsular polysaccharide. *Tetrahedron* **1989**, *45*, 7433–7448.

9. Dasgupta, F.; Garegg, P.J. Synthesis of ethyl and phenyl 1-thio-1,2-trans-Dglucopyranosides from the corresponding per-*O*-acetylated glycopyranoses having a 1,2 *trans* configuration using ferric chloride as a promoter. *Acta Chem. Scand.* **1989**, *43*, 471–475.

10. (a) Veeneman, G.H.; van Leeuwen, S.H.; van Boom, J.H. Iodonium ion promoted reactions at the anomeric centre. II. An efficient thioglycoside mediated approach toward the formation of 1,2-*trans* linked glycosides and glycosidic esters. *Tetrahedron Lett.* **1990**, *31*, 1331–1334. (b) Konradsson, P.; Udodong, U.E.; Fraser-Reid, B. Iodonium promoted reactions of disarmed thioglycosides. *Tetrahedron Lett.* **1990**, *31*, 4313–4316.

11. (a) Madhusudan, S.K.; Agnihotri, G.; Negi, D.S.; Misra, A.K. Direct one-pot conversion of acylated carbohydrates into their alkylated derivatives under heterogeneous reaction conditions using solid NaOH and a phase transfer catalyst. *Carbohydr. Res.* **2005**, *340*, 1373–1377. (b) Fredrick Vernay, H.; Rachaman, E.S.; Eby, R.; Schuerch, C. The use of 2-*O*-acyl-1-*O*-sulfonyl-D-galactopyranose derivatives in *β*-D-galactopyranoside synthesis. *Carbohydr. Res.* **1980**, *78*, 267–273. (c) Szeja, W. Alkylation of carbohydrates in a catalytic two- phase system. *Polish J. Chem.* **1981**, *55*, 1503–1509.

12. Agnihotri, G.; Misra, A.K. Mild and efficient method for the cleavage of benzylidene acetals using HClO4-SiO2 and direct conversion of acetals to acetates. *Tetrahedron Lett.* **2006**, *47*, 3653–3658.

13. Chakraborty, A.K.; Gulhane, R. Perchloric acid adsorbed on silica gel as a new, highly efficient, and versatile catalyst for acetylation of phenols, thiols, alcohols and amines. *Chem. Commun.* **2003**, 1896–1897.

14. (a) Schmidt, R.R.; Grundler, G. *α*-Linked disaccharides from *O*-(*β*-Dglycopyranosyl trichloroacetimidates using trimethylsilyl trifluromethanesulfonate as catalyst. *Angew. Chem. Int. Ed. Engl.* **1982**, *21*, 781–782. (b) Grundler, G.; Schmidt, R.R. Anwendung des trichloroacetimidat-verfahrens auf 2-azidoglucose-und 2-azidogalactose-derivative. *Leibigs Ann. Chem.* **1984**, 1826–1847.

15. Benjamin, I.; Hong, H.; Avny, Y.; Davidov, D.; Neumann, R. Poly(phenylenevinylene) analogs with ring substituted polar side chains and their use in the formation of hydrogen bonding based self-assembled multilayers. *J. Mater. Chem.* **1998**, *8*, 919–924.

16. Schmidt, R.R.; Behrendt, M.; Toepfer, A. Nitriles as solvents in glycosylation reactions: highly selective *β*-glycoside synthesis. *Synlett* **1990**, 694–696.

17. Schmidt, R.R.; Jung, K.-H. Oligosaccharide synthesis with trichloroacetimidates. In *Preparative Carbohydrate Chemistry*, Hanessian, S. Ed.; Marcel Dekker, Inc.: New York, **1997**, 283–308.

18. Pearlman, W.M. Noble metal hydroxides on carbon nonpyrophoric dry catalysts. *Tetrahedron Lett.* **1967**, *8*, 1663–1664.